Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-4151744.v1

ABSTRACT

Racial/ethnic differences are associated with the potential symptoms and conditions of post-acute sequelae SARS-CoV-2 infection (PASC) in adults. These differences may exist among children and warrant further exploration. We conducted a retrospective cohort study for children and adolescents under the age of 21 from the thirteen institutions in the RECOVER Initiative. The cohort is 225,723 patients with SARS-CoV-2 infection or COVID-19 diagnosis and 677,448 patients without SARS-CoV-2 infection or COVID-19 diagnosis between March 2020 and October 2022. The study compared minor racial/ethnic groups to Non-Hispanic White (NHW) individuals, stratified by severity during the acute phase of COVID-19. Within the severe group, Asian American/Pacific Islanders (AAPI) had a higher prevalence of fever/chills and respiratory symptoms, Hispanic patients showed greater hair loss prevalence in severe COVID-19 cases, while Non-Hispanic Black (NHB) patients had fewer skin symptoms in comparison to NHW patients. Within the non-severe group, AAPI patients had increased POTS/dysautonomia and respiratory symptoms, and NHB patients showed more cognitive symptoms than NHW patients. In conclusion, racial/ethnic differences related to COVID-19 exist among specific PASC symptoms and conditions in pediatrics, and these differences are associated with the severity of illness during acute COVID-19.


Subject(s)
COVID-19 , Fever , Primary Dysautonomias
3.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.19.24302823

ABSTRACT

BackgroundThe impact of pre-infection vaccination on the risk of long COVID remains unclear in the pediatric population. Further, it is unknown if such pre-infection vaccination can mitigate the risk of long COVID beyond its established protective benefits against SARS-CoV-2 infection. ObjectiveTo assess the effectiveness of BNT162b2 on long COVID risks with various strains of the SARS-CoV-2 virus in children and adolescents, using comparative effectiveness methods. To disentangle the overall effectiveness of the vaccine on long COVID outcomes into its independent impact and indirect impact via prevention of SARS-CoV-2 infections, using causal mediation analysis. DesignReal-world vaccine effectiveness study and mediation analysis in three independent cohorts: adolescents (12 to 20 years) during the Delta phase, children (5 to 11 years) and adolescents (12 to 20 years) during the Omicron phase. SettingTwenty health systems in the RECOVER PCORnet electronic health record (EHR) Program. Participants112,590 adolescents (88,811 vaccinated) in the Delta period, 188,894 children (101,277 vaccinated), and 84,735 adolescents (37,724 vaccinated) in the Omicron period. ExposuresFirst dose of the BNT162b2 vaccine vs. no receipt of COVID-19 vaccine. MeasurementsOutcomes of interest include conclusive or probable diagnosis of long COVID following a documented SARS-CoV-2 infection, and body-system-specific condition clusters of post-acute sequelae of SARS-CoV-2 infection (PASC), such as cardiac, gastrointestinal, musculoskeletal, respiratory, and syndromic categories. The effectiveness was reported as (1-relative risk)*100 and mediating effects were reported as relative risks. ResultsDuring the Delta period, the estimated effectiveness of the BNT162b2 vaccine against long COVID among adolescents was 95.4% (95% CI: 90.9% to 97.7%). During the Omicron phase, the estimated effectiveness against long COVID among children was 60.2% (95% CI: 40.3% to 73.5%) and 75.1% (95% CI: 50.4% to 87.5%) among adolescents. The direct effect of vaccination, defined as the effect beyond their impact on SARS-CoV-2 infections, was found to be statistically non-significant in all three study cohorts, with estimates of 1.08 (95% CI: 0.75 to 1.55) in the Delta study among adolescents, 1.24 (95% CI: 0.92 to 1.66) among children and 0.91 (95% CI: 0.69 to 1.19) among adolescents in the Omicron studies. Meanwhile, the estimated indirect effects, which are effects through protecting SARS-CoV-2 infections, were estimated as 0.04 (95% CI: 0.03 to 0.05) among adolescents during Delta phase, 0.31 (95% CI: 0.23 to 0.42) among children and 0.21 (95% CI: 0.16 to 0.27) among adolescents during the Omicron period. LimitationsObservational study design and potentially undocumented infection. ConclusionsOur study suggests that BNT162b2 was effective in reducing risk of long COVID outcomes in children and adolescents during the Delta and Omicron periods. The mediation analysis indicates the vaccines effectiveness is primarily derived from its role in reducing the risk of SARS-CoV-2 infection. Primary Funding SourceNational Institutes of Health.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Musculoskeletal Diseases
4.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.26.24301827

ABSTRACT

Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe post-acute sequela of SARS-CoV-2 infection. The highly diverse clinical features of MIS-C necessities characterizing its features by subphenotypes for improved recognition and treatment. However, jointly identifying subphenotypes in multi-site settings can be challenging. We propose a distributed multi-site latent class analysis (dMLCA) approach to jointly learn MIS-C subphenotypes using data across multiple institutions. Methods We used data from the electronic health records (EHR) systems across nine U.S. childrens hospitals. Among the 3,549,894 patients, we extracted 864 patients < 21 years of age who had received a diagnosis of MIS-C during an inpatient stay or up to one day before admission. Using MIS-C conditions, laboratory results, and procedure information as input features for the patients, we applied our dMLCA algorithm and identified three MIS-C subphenotypes. As validation, we characterized and compared more granular features across subphenotypes. To evaluate the specificity of the identified subphenotypes, we further compared them with the general subphenotypes identified in the COVID-19 infected patients. Findings Subphenotype 1 (46.1%) represents patients with a mild manifestation of MIS-C not requiring intensive care, with minimal cardiac involvement. Subphenotype 2 (25.3%) is associated with a high risk of shock, cardiac and renal involvement, and an intermediate risk of respiratory symptoms. Subphenotype 3 (28.6%) represents patients requiring intensive care, with a high risk of shock and cardiac involvement, accompanied by a high risk of >4 organ system being impacted. Importantly, for hospital-specific clinical decision-making, our algorithm also revealed a substantial heterogeneity in relative proportions of these three subtypes across hospitals. Properly accounting for such heterogeneity can lead to accurate characterization of the subphenotypes at the patient-level. Interpretation Our identified three MIS-C subphenotypes have profound implications for personalized treatment strategies, potentially influencing clinical outcomes. Further, the proposed algorithm facilitates federated subphenotyping while accounting for the heterogeneity across hospitals.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Shock , Infections , Kidney Diseases , COVID-19
5.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.27.23296100

ABSTRACT

Objective Vaccination reduces the risk of acute COVID-19 in children, but it is less clear whether it protects against long COVID. We estimated vaccine effectiveness (VE) against long COVID in children aged 5 to 17 years. Methods This retrospective cohort study used data from 17 health systems in the RECOVER PCORnet electronic health record (EHR) Program for visits between vaccine availability, and October 29, 2022. Conditional logistic regression was used to estimate VE against long COVID with matching on age group (5 to 11, 12 to 17) and time period and adjustment for sex, ethnicity, health system, comorbidity burden, and pre-exposure health care utilization. We examined both probable (symptom-based) and diagnosed long COVID in the year following vaccination. Results The vaccination rate was 56% in the cohort of 1,037,936 children. The incidence of probably long COVID was 4.5% among patients with COVID-19, while diagnosed long COVID was 0.7%. Adjusted vaccine effectiveness within 12 months was 35.4% (95 CI 24.5 - 44.5) against probable long COVID and 41.7% (15.0- 60.0) against diagnosed long COVID. VE was higher for adolescents 50.3% [36.3 - 61.0]) than children aged 5-11 (23.8% [4.9 -39.0]). VE was higher at 6 months (61.4% [51.0 - 69.6]), but decreased to 10.6% (-26.8 - 37.0%) at 18 months. Discussion This large retrospective study shows a moderate protective effect of SARS-CoV-2 vaccination against long COVID. The effect is stronger in adolescents, who have higher risk of long COVID, and wanes over time. Understanding VE mechanism against long COVID requires more study, including EHR sources and prospective data. Discussion This large retrospective study shows a moderate protective effect of SARS-CoV-2 vaccination against long COVID. The effect is stronger in adolescents, who have higher risk of long COVID, and wanes over time. Understanding VE mechanism against long COVID requires more study, including EHR sources and prospective data.


Subject(s)
COVID-19
6.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.16.23291515

ABSTRACT

BACKGROUND The current understanding of the long-term effectiveness of the BNT162b2 vaccine for a range of outcomes across diverse U.S. pediatric populations is limited. In this study, we assessed the effectiveness of BNT162b2 against various strains of the SARS-CoV-2 virus using data from a national collaboration of pediatric health systems (PEDSnet). METHODS We emulated three target trials to assess the real-world effectiveness of BNT162b2: adolescents aged 12 to 20 years during the Delta variant period (Target trial 1), children aged 5 to 11 years (Target trial 2) and adolescents aged 12 to 20 years during the Omicron variant period (Target trial 3). The outcomes included documented infection, COVID-19 illness severity, admission to an intensive care unit (ICU), and two cardiac-related outcomes, myocarditis and pericarditis. In the U.S., immunization records are often captured and stored across multiple disconnected sources, resulting in incomplete vaccination records in patients' electronic health records (EHR). We implemented a novel trial emulation pipeline accounting for possible misclassification bias in vaccine documentation in EHRs. The effectiveness of the BNT162b2 vaccine was estimated from the Poisson regression model with confounders balanced via propensity score stratification. RESULTS During the Delta period, the BNT162b2 vaccine demonstrated an overall effectiveness 98.4% (95% CI, 98.1 to 98.7) against documented infection among adolescents, with no significant waning after receipt of the first dose. During the Omicron period, the overall effectiveness was estimated to be 74.3% (95% CI, 72.2 to 76.2) in preventing documented infection among children, which was higher against moderate or severe COVID-19 (75.5%; 95% CI, 69.0 to 81.0) and ICU admission with COVID-19 (84.9%; 95% CI, 64.8 to 93.5). In the adolescent population, the overall effectiveness against documented Omicron infection was 85.5% (95% CI, 83.8 to 87.1), with effectiveness of 84.8% (95% CI, 77.3 to 89.9) against moderate or severe COVID-19, and 91.5% (95% CI, 69.5 to 97.6) against ICU admission with COVID-19. The effectiveness of the BNT162b2 vaccine against the Omicron variant declined after 4 months following the first dose and then stabilized with higher levels of uncertainty. Across all three cohorts, the risk of cardiac outcomes was approximately 65% to 85% lower in the vaccinated group than that of the unvaccinated group accounting for possible misclassification bias. CONCLUSIONS This study suggests BNT162b2 was effective among children and adolescents in Delta and Omicron periods for a range of COVID-19-related outcomes and is associated with a lower risk for cardiac complications. Waning effectiveness over time suggests that revaccination may be needed in the future.


Subject(s)
von Willebrand Disease, Type 3 , Pericarditis , Cardiac Complexes, Premature , Myocarditis , COVID-19
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.03.22281916

ABSTRACT

Background: Post-acute sequelae of SARS-Co-V-2 infection (PASC) is associated with worsening diabetes trajectory. It is unknown whether PASC in children with type 1 diabetes (T1D) manifests as worsening diabetes trajectory. Objective: To explore the association between SARS-CoV-2 infection (COVID-19) and T1D-related healthcare utilization (for diabetic ketoacidosis [DKA] or severe hypoglycemia [SH]) or Hemoglobin (Hb) A1c trajectory. Methods: We included children <21 years with T1D and [≥]1 HbA1c prior to cohort entry, which was defined as COVID-19 (positive diagnostic test or diagnosis code for COVID-19, multisystem inflammatory syndrome in children, or PASC) or a randomly selected negative test for those who were negative throughout the study period (Broad Cohort). A subset with [≥]1 HbA1c value from 28-275 days after cohort entry (Narrow Cohort) was included in the trajectory analysis. Propensity score-based matched cohort design followed by weighted Cox regression was used to evaluate the association of COVID-19 with healthcare utilization >28 days after cohort entry. Generalized estimating equation models were used to measure change in HbA1c in the Narrow cohort. Results: From 03/01/2020-06/22/2022, 2,404 and 1,221 youth met entry criteria for the Broad and Narrow cohorts, respectively. The hazard ratio for utilization was (HR 1.45 [95%CI,0.97,2.16]). In the Narrow Cohort, the rate of change (slope) of HbA1c increased 91-180 days after cohort entry for those with COVID-19 (0.138 vs. -0.002, p=0.172). Beyond 180 days, greater declines in HbA1c were observed in the positive cohort (-0.104 vs. 0.008 per month, p=0.024). Conclusion: While a trend towards worse outcomes following COVID-19 in T1D patients was observed, these findings were not statistically significant. Continued clinical monitoring of youth with T1D following COVID-19 is warranted.


Subject(s)
Diabetic Ketoacidosis , Coinfection , Cryopyrin-Associated Periodic Syndromes , Pulmonary Disease, Chronic Obstructive , Diabetes Mellitus , Hypoglycemia , COVID-19
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.26.22280364

ABSTRACT

Background: Multi-system inflammatory syndrome in children (MIS-C) represents one of the most severe post-acute sequelae of SARS-CoV-2 infection in children, and there is a critical need to characterize its disease patterns for improved recognition and management. Our objective was to characterize subphenotypes of MIS-C based on presentation, demographics and laboratory parameters. Methods: We conducted a retrospective cohort study of children with MIS-C from March 1, 2020 - April 30, 2022 and cared for in 8 pediatric medical centers that participate in PEDSnet. We included demographics, symptoms, conditions, laboratory values, medications and outcomes (ICU admission, death), and grouped variables into eight categories according to organ system involvement. We used a heterogeneity-adaptive latent class analysis model to identify three clinically-relevant subphenotypes. We further characterized the sociodemographic and clinical characteristics of each subphenotype, and evaluated their temporal patterns. Findings: We identified 1186 children hospitalized with MIS-C. The highest proportion of children (44.4%) were aged between 5-11 years, with a male predominance (61.0%), and non-Hispanic white ethnicity (40.2%). Most (67.8%) children did not have a chronic condition. Class 1 represented children with a severe clinical phenotype, with 72.5% admitted to the ICU, higher inflammatory markers, hypotension/shock/dehydration, cardiac involvement, acute kidney injury and respiratory involvement. Class 2 represented a moderate presentation, with 4-6 organ systems involved, and some overlapping features with acute COVID-19. Class 3 represented a mild presentation, with fewer organ systems involved, lower CRP, troponin values and less cardiac involvement. Class 1 initially represented 51.1% of children early in the pandemic, which decreased to 33.9% from the pre-delta period to the omicron period. Interpretation: MIS-C has a spectrum of clinical severity, with degree of laboratory abnormalities rather than the number of organ systems involved providing more useful indicators of severity. The proportion of severe/critical MIS-C decreased over time.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , Laboratory Infection , Hypotension , Dementia, Multi-Infarct , Death , Acute Kidney Injury , COVID-19
9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.08.22276768

ABSTRACT

Background Chronic medical conditions are a risk factor for moderate or severe COVID-19 in children, but little is known about post-acute sequelae of SARS-CoV-2 infection (PASC) in children with chronic medical conditions (CMCs). To understand whether SARS-CoV-2 infection led to potential exacerbation of underlying chronic disease in children, we explored whether children with CMCs had increased healthcare utilization in the post-acute (28 days after infection) period compared to children with CMCs without SARS-CoV-2 infection. Methods We conducted a retrospective, matched-cohort study using electronic health record data collected from 8 pediatric health care systems participating in the PEDSnet network. We included children <21 years of age with a wide array of chronic conditions, defined by the presence of diagnostic codes, who were diagnosed with COVID-19 between March 1, 2020 and February 28, 2022. Cohort entry was defined by presence of a positive SARS-CoV-2 PCR test (polymerase chain reaction or antigen) or diagnostic codes for COVID-19, PASC or MIS-C. A comparison cohort of patients testing negative or without these conditions was matched using a stratified propensity score model and exact matching on age group, race/ethnicity, institution, test location, and month of cohort entry. A negative binomial model was used to examine our primary outcome: composite and setting-specific (inpatient, outpatient, ED) utilization rate ratios between the positive and comparison cohorts. Secondary outcomes included time to first utilization in the post-acute period, and utilization stratified by severity at cohort entry. Results We identified 748,692 patients with at least one chronic condition, 78,744 of whom met inclusion criteria for the COVID-19 cohort. 96% of patients from the positive cohort were matched. Cohorts were well-balanced for chronic condition clusters, total number of conditions, time since first diagnosis, baseline utilization, cohort entry period, age, sex, race/ethnicity and test location. We found that among children with chronic medical conditions, those with COVID-19 had higher healthcare utilization than those with no recorded COVID-19 diagnosis or positive test, with utilization rate ratio of 1.21 (95% CI: 1.18-1.24). The utilization was highest for inpatient care with utilization rate ratio of 2.03 (95% CI: 1.85-2.23) but the utilization was increased across all settings. Hazard ratios estimated in time-to-first-utilization analysis mirrored these results. Patients with severe or moderate acute COVID-19 illness had greater increases in utilization in all settings than those with mild or asymptomatic disease. Conclusions We found that care utilization in all settings was increased following COVID-19 in children with chronic medical conditions in the post-acute period, particularly in the inpatient setting. Increased utilization was correlated with more severe COVID-19. Additional research is needed to better understand the reasons for higher care utilization by studying condition-specific outcomes in children with chronic disease.


Subject(s)
COVID-19 , Chronic Disease
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.12.20099945

ABSTRACT

Social and mental stressors associated with the COVID-19 pandemic may promote long-term effects on child development. However, reports aimed at identifying the relationship between pandemics and child health are limited. We conducted a retrospective study to evaluate the severe acute respiratory syndrome (SARS) pandemic in 2003 and its relationship to child development indicators using a representative sample across China. Our study involved longitudinal measurements of 14,647 children, 36% of whom (n = 5216) were born before or during the SARS pandemic. Cox models were utilized to examine the effects of SARS on preterm birth and four milestones of development: age to (1) walk independently, (2) say a complete sentence, (3) count from 0 to 10, and (4) undress him/herself for urination. Mixed effect models were utilized to associate SARS with birthweight, body weight and height. Our results show that experiencing SARS during early childhood was significantly associated with delayed milestones, with adjusted hazard ratios of 3.17 [95% confidence intervals (CI): 2.71, 3.70], 3.98 (3.50, 4.53), 4.96 (4.48, 5.49), or 5.57 (5.00, 6.20) for walking independently, saying a complete sentence, counting from 0 to 10, and undressing him/herself for urination, respectively. Experiencing SARS was also associated with reduced body weight. This effect was strongest for preschool children [a weight reduction of 4.86 (0.36, 9.35) kg, 5.48 (-0.56, 11.53) kg or 5.09 (-2.12, 12.30) kg for 2, 3, 4 year-olds, respectively]. We did not identify a significant effect of maternal SARS exposure on birthweight or gestational length. Collectively, our results showed that the SARS pandemic was associated with delayed child development and provided epidemiological evidence to support the association between infectious disease epidemics and impaired child health. These results provide a useful framework to investigate and mitigate relevant impacts from the COVID-19 pandemic.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL